Рене Декрат

Центральне місце серед них займають складені близько 300 до н. е. «Начала» Евкліда. Ця праця і понині залишається зразковим викладенням у дусі аксіоматичного методу: всі положення виводяться логічним шляхом з невеликого числа явно зазначених і не доводимих припущень — аксіом. Геометрія греків, звана сьогодні евклідовою, або елементарною, займалася вивченням простих форм: прямих, площин, відрізків, правильних багатокутників і багатогранників, конічних перерізів, а також куль, циліндрів, призм, пірамід і конусів. Обчислюються їхні площі і об'єми. Перетворення в основному обмежувалися геометричною подібністю.
Середньовіччя небагато дало геометрії, і наступною великою подією в її історії стало відкриття Рене Декартом (1596—1650) і П'єром Ферма (1601—1665) в XVII столітті координатного методу («Міркування про метод», 1637). Точкам зіставляються набори чисел, це дозволяє вивчати відносини між формами методами алгебри. Так з'явилася аналітична геометрія, що вивчає фігури і перетворення, які в координатах задаються алгебричними рівняннями. Приблизно одночасно з цим Блезом Паскалем і Жераром Дезаргом (1591—1661) почато дослідження властивостей плоских фігур, що не міняються при проектуванні з однієї площини на іншу. Цей розділ отримав назву проективної геометрії. Метод координат лежить з розвитком математичного аналізу ліг в основу нового підходу, що з'явився трохи пізніше, — диференціальної геометрії, де фігури і перетворення все ще задаються в координатах, але вже довільними досить гладкими функціями Властивості цих фігур вивчаються за допомогою моці й гнучкості апарату аналізу.

Коментарі

Популярні дописи з цього блогу

Природні творіння у вигляді геометричних фігур

Геометрія в побуті

Для чого ж ти нам потрібна, геометрія